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Abstract-For the first time, a study is made of leaky waves

in anisotropic circular channel waveguides consisting of uniaxial

crystalline material, in which the optical axis is on the plane
which is defined by the propagation axis and one of the transverse

coordinates axes, The analysis is based on the theory of coupled
modes. Mathematical discretization of the continuum of radiation
modes offers satisfactorily accurate solutions of the coupled-mode

equations. The characteristics of leakage losses and the field
distributions of leaky waves in a LiNb03 waveguide are discussed
on the basis of the numerical results.

I. INTRODUCTION

M ANY guided-wave devices for optical integrated cir-

cuits are fabricated on LiNb03 or LiTa03 substrates

because of their excellent optical properties and relatively

strong electrooptic effects [1]. Therefore, understanding the

details of wave propagation in such anisotropic dielectric

waveguides is of fundamental interest from the point of view

of waveguiding theory as well as practical device planning.

There are two different approaches to wavegttide analysis.

One is the eigenmode method which seeks the solution of

Maxwell’s equations that satisfies proper boundary conditions.

This is applicable to the analysis of waveguides uniform

along the propagation direction. In some two-dimensional

waveguides, it is possible to obtain rigorous solutions includ-

ing leaky-wave solutions [2] – [7]. However, the difficulty in

matching all required boundary conditions makes it hard to

solve three-dimensional waveguides rigorously even if there

is no misalignment between the waveguide and material axes;

therefore, only a few cases have been studied [8], [9]. For pure

guided modes, some numerical methods have yielded accurate

solutions [10] - [12]. However, in order to analyze leaky waves

in channel waveguides with axes misalignment, we must try

tQ find complex solutions of complicated vector equations;

reliable solutions have not been reported yet.

A coupled-mode analysis may be a powerful approach for

such a case. In this approach, the electromagnetic fields in

the waveguide under consideration are expanded in terms of
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normal modes of appropriate waveguides which are similar

to the waveguide of interest. The waveguiding properties

can be understood from the knowledge of mode-conversion

phenomena among the normal modes, Coupled-mode theory

is practical because it can describe fields in waveguides

that are inhomogeneous along the propagation axis andfor of

finite length suitable for integrated-optics devices. When it

is possible to obtain normal modes in a certain waveguide

structure, any waveguide perturbation can always be treated

by means of the coupled-mode analysis [13] –[18].

In the present paper, we analyze the propagation characteris-

tics of leaky waves in a circular channel waveguide consist ing

of uniaxial crystalline material. The optical axis of the material

lies on the plane defined by the propagation axis and one of

the transverse coordinate axes. The angle between the optical

axis and waveguide axis is referred to as the oblique ar@e.

The leakage of optical waves can be described as a malde-

conversion phenomenon between a guided mode and radiation

modes. The continuum of radiation modes is discretized for

computational convenience in the present analysis. This paper

clarifies the basic behavior of leaky waves in an anisotropic

channel waveguide for the first time, which deepens our

understanding of anisotropic waveguides.

II. WAVEGUIDE STRUCTURE AND MODE EXPANSION

The waveguide structure under consideration is shown in

Fig. 1, together with the coordinate system used for the

analysis. Both the core and substrate are assumed to be

composed of a uniaxial crystalline material. The z-axis is the

propagation direction of the optical waves. It is assumed that

the optical axes in the core and substrate regions are parallel

and that they make an oblique angle a with the z-axis in

the y-z plane. Then, the permittivity tensor in the waveguide

coordinate system is expressed as

“=’0(7 :!: i::)

(1)
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Fig. 1. The waveguide structure and coordinate system.

where ?tOd and n,d are an ordinary and an extraordinary

refractive index of the material. The subscript d refers to the

core, d = c, or the substrate, d = s. The free-space permittivity

is expressed by EO.

Now suppose the waveguide specified by (1) is connected

to a circular waveguide, occupying the region z <0, with the

same radius and permittivity given by

()
100

& = &l)&zzd O 1 0 (3)

001

Propagating electromagnetic fields in the region z > 0 can

be expanded in terms of the normal modes of the waveguide

specified by (3) as follows:

( ) and a,(p, Z) are complex amplitude coefficientswhere agV z

of the guided and radiation modes, p represents the transverse

propagation constant of the radiation modes, and /c. is the

free-space wavenumber. For completeness, the upper bound

of the integral should be extended to infinity. However, the

evanescent modes with spectra in the range of no~ lco < p < cc

which do not carry optical power away from the waveguide are

necessary not in order to account for the radiation losses, but

to express the fine details of the field close to the waveguide
discontinuities. Being interested in the leakage behavior of

optical waves in z >0 when a certain guided mode is incident

on the interface at z = O, we need only to take normal modes

with positive and real propagation constants into consideration

in the mode expansions. The effects of reflection at z = O

can be neglected because the difference between the dielectric

constants (1) and (3) is very small for most practical cases.

In usual metal-diffused channel waveguides consisting of

LiNb03, for example, the difference of refractive index is very

small between the core and substrate regions. Therefore, the

LP modes will serve our purpose as an excellent approximation

to the rigorous normal modes in the waveguide defined by

(3) [19]. Being expressed in rectangular components, the

LP modes match the permittivity tensor in mathematical

description.

III. COUPLED-MODE ANALYSIS

Suppose the waveguide is operated in the single-mode

region and either a x-polarized or y-polarized dominant mode

is incident on the interface at z = O from the region z <0. If

we neglect the coupling between radiation modes due to the

discontinuity, the wave propagation in z >0 can be described

by the following coupled-mode equations [13]:

where ~g and ,@ represent the propagation constants of

the guided and radiation modes, respectively. The asterisk

indicates complex conjugation and the superscript p refers to

the polarization: p = x or y. The coupling coefficients K~g

and K~, are expressed as the following overlap integral of the

electric field [13]:

where w is the angular frequency and W is the power carried

by a normal mode.

It is troublesome to solve (5) analytically in a closed form

since the integral with respect to p is included; so in the

present analysis, we discretize the continuum of radiation

modes for computational convenience. Using the increment

Ap, (z=l,2,... , n), the preceding coupled-mode equations

become

where pi is assumed to take an intermediate value in the inter-

val Apt for the sake of convenience. The complex amplitude

of a discretized radiation mode is defined by

a~t(z) = &, a~(p,, Z) (8)

in order that its dimension coincides with that of the guided

modes. Readers are referred to [17] for details of the solution

to (7).

IV. NUMERICAL RESULTS

The refractive indices in the core and substrate regions are

chosen so that noc = 2.296, n,O~ = 2.286, nec = 2.21, and
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Fig. 2. Coupling coefficients between the y-polarized dominant mode and
x-polarized radiation modes as a function of the transverse propagation
constant.

ne~ = 2.2, which are the typical values for LiNb03 channel

waveguides in practical use. The waveguide occupying the

region z < 0 with such indices supports only the dominant

mode when ako < 11.

Before investigating the details of leaky waves, the accuracy

of otu. solutions should be checked. Fig. 2 shows the cou-

pling coefficients between the y-polarized dominant mode and

x-polarized radiation modes when alto = 8 and a = 15°. The

coefficients are normalized relative to ko. The abscissa rep-

resents the normalized transverse propagation constant p/k..

The coupling coefficients for the y-polarized radiation modes

have a functional dependence analogous to Fig. 2.

First, let us test the discretization of the p-space. The

radiation modes with transverse propagation constants in the

region O < p/k. < 0.3 are taken into account and are

discretized uniformly. The numerical values for the normalized

power of the guided mode are listed in Table I when koz =

500 and 2000, They are in good agreement up to 4 m 5

significant digits. Judging from these results, the convergence

of solutions does not depend critically upon the interval of

discretization. However, we have to remark that nonphysical

behavior has been observed at large distances, koz >6000,

when the number of discretized modes is 20. With these results

in mind, numerical calculations in the following are carried

out with 80-discretized radiation modes, which corresponds

the interval of Ap,/ko = 0.00375.

Next, we check the convergence of solutions on the upper

bound of the integral (pm.X) with respect to p in (5), It

has been pointed out in [17] that in actual computations, the

upper bound need not be identical with nos ko, but may be

far smaller without sacrificing accuracy. The lower botmd of

the integral should be equal to zero since radiation ,modes

with small values of p significantly contribute to the rmode

coupling even if their coupling coefficients are not large. The

numerical values of the solutions are listed in Table II when

ko.z = 500 and 2000. We can obtain solutions accurate to 4

significant digits when p > 0.28ko. Therefore, in the following

calculations, we choose p~,x = 0.3ko, at which the absollute

value of the coupling coefficient decreases to one quarter of

its peak value.

One of the most important characteristics of the leaky wave

is the leakage loss. Fig. 3 illustrates the dependence of power

leakage on the angle a for the cases of (a) an incident y-

polarized mode and (b) an incident x-polarized mode when

ako = 8. Only the y-polarized mode exhibits noticeable leaky

behavior which can be observed in a narrow region of the

angle a. This corresponds to the fact that the TE guided mode

becomes leaky in a slab waveguide whose w-face is parallel

TABLE I
CONVERGENCE OF SOLUTIONS ON THE NUMBER OF THE DISCRETIZED MODES FOR THE REGION OF O < P/k. <0.3

Power of the Guided Wave

Number of Discretized Modes ,%02 = 500 k~% = 2000

20 0.486338
40

0.033799
0.486334

60
0.033783

0.486339
80

0.033782
0.486338 0.033782

120 0.486338 0.033782

TABLE II
‘CONVERGENCEOF SOLUTIONSONTHEUPPERO BOUND OF THE INTEGRAL IN (5), WHERE Apt /ko = 0.00375

Power of the Guided Wave

Pmax/~0 (Pmax/~Pt) .kI)z = 500 ,%0. = 2000

0.11 (30) 0.729722 0.035042
0.17 (45) 0.526194 0.027664
0.22 (60) 0.485945 0.033575
0.28 (75) 0.486384 0.033751
0.45 (120) 0.486233 0.033840
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Fig. 3. Power change of the incident mode as a function of the propagation
distance with the oblique angle as a parameter (a) the y-polarized mode
incidence and (b) the x-polarized mode incidence.

to the y-z plane in the coordinate system in Fig. 1[7]. Leaky

waves do not exist in a slab waveguide with the optical axis

in the y-z plane whose surface is parallel to the x-z plane

[6]. In the circular channel waveguides which are considered

in the present paper, however, the x-polarized mode would

become leaky instead if the optical axis is in the x-z plane. This

fact can be easily understood from symmetry considerations

of the structure. Although the actual sections of practical

channel waveguides are somewhat different from Fig. 1, the

physical principles are qualitatively the same. Therefore, one

of the orthogonally polarized modes becomes leaky in general

cylindrical waveguides composed of uniaxial whose optical

axis lies on the plane which is defined by the propagation axis

and one of the transverse coordinate axes. An absolute single-

mode single-polarized Qperation may be possible by means of

these structures.

Another important property is the filed distribution. Fig. 4

shows the power density of the leaky wave observed in

the x = O and y = O planes along the propagation axis

when ako = 8 and a = 15°. The bird’s eye views of the

power density for the radiated field on the cross sections

at ko~ = 250, 750, and 1500 are illustrated in Fig. 5. It is

recognized from these figures that the optical wave leaks its

power mainly in the plane which contains the optical axis.

This behavior is quite a distinct difference from that of a slab

waveguide.
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Fig. 4. Power density of the leaky wave observed (a) in the z = O

plane and (b) in the y = O plane.

V. CONCLUSION

We have investigated the wave propagation in a circular

channel waveguide consisting of uniaxial crystalline material.

The optical axis of the material lies on the plane which is

defined by the propagation axis and one of the transverse co-

ordinate axes. The analytical method is based on the coupled-

mode theory, where the coupling between radiation modes is

neglected. The continuum of radiation modes is discreted for

the convenience of numerical integration. Numerical data are

presented for waveguides composed of LiNb03, a representa-

tive uniaxial crystalline material used for optical devices. The

leakage behavior for oblique propagation is discussed with the

oblique angle as a parameter. An absolute single-mode single-

polarized operation is suggested. Field distributions of leaky

waves are also presented which exhibit notable differences

from those of leaky waves in slab waveguides.
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Fig. 5. Bird’s eye views of the power density for the radiated field on the
cross sections at (a) kO z = 250, (b) /c. z = 750, and (c) k. z = 1500.
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