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Coupled-Mode Analysis of Leaky Waves in Channel
Waveguides Consisting of Anisotropic Material

Masahiro Geshiro, Member, IEEE, Masashi Hotta, Member, IEEE, and Tomotoshi Kameshima

Abstract—For the first time, a study is made of leaky waves
in anisotropic circular channel waveguides consisting of uniaxial
crystalline material, in which the optical axis is on the plane
which is defined by the propagation axis and one of the transverse
coordinates axes. The analysis is based on the theory of coupled
modes. Mathematical discretization of the continuum of radiation
modes offers satisfactorily accurate solutions of the coupled-mode
equations. The characteristics of leakage losses and the field
distributions of leaky waves in a LiNbO; waveguide are discussed
on the basis of the numerical resuits.

I. INTRODUCTION

ANY guided-wave devices for optical integrated cir-
cuits are fabricated on LiNbOjz or LiTaO3 substrates
because of their excellent optical properties and relatively
strong electrooptic effects [1]. Therefore, understanding the
details of wave propagation in such anisotropic dielectric
waveguides is of fundamental interest from the point of view
of waveguiding theory as well as practical device planning.
There are two different approaches to waveguide analysis.
One is the eigenmode method which seeks the solution of
Maxwell’s equations that satisfies proper boundary conditions.
This is applicable to the analysis of waveguides uniform
along the propagation direction. In some two-dimensional
waveguides, it is possible to obtain rigorous solutions includ-
ing leaky-wave solutions [2]—[7]. However, the difficulty in
matching all required boundary conditions makes it hard to
solve three-dimensional waveguides rigorously even if there
is no misalignment between the waveguide and material axes;
therefore, only a few cases have been studied [8], [9]. For pure
guided modes, some numerical methods have yielded accurate
solutions [10]-[12]. However, in order to analyze leaky waves
in channel waveguides with axes misalignment, we must try
to find complex solutions of complicated vector equations;
reliable solutions have not been reported yet.
A coupled-mode analysis may be a powerful approach for
such a case. In this approach, the electromagnetic fields in
the waveguide under consideration are expanded in terms of
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normal modes of appropriate waveguides which are similar
to the waveguide of interest. The waveguiding properties
can be understood from the knowledge of mode-conversion

" phenomena among the normal modes. Coupled-mode theory

is practical because it can describe fields in waveguides
that are inhomogeneous along the propagation axis and/or of
finite length suitable for integrated-optics devices. When it
is possible to obtain normal modes in a certain waveguide
structure, any waveguide perturbation can always be treated
by means of the coupled-mode analysis [13]-[18].

In the present paper, we analyze the propagation characteris-
tics of leaky waves in a circular channel waveguide consisting
of uniaxial crystalline material. The optical axis of the material
lies on the plane defined by the propagation axis and one of
the transverse coordinate axes. The angle between the optical
axis and waveguide axis is referred to as the oblique angle.
The leakage of optical waves can be described as a mode-
conversion phenomenon between a guided mode and radiation
modes. The continuum of radiation modes is discretized for
computational convenience in the present analysis. This paper
clarifies the basic behavior of leaky waves in an anisotropic
channel waveguide for the first time, which deepens our
understanding of anisotropic waveguides.

1. WAVEGUIDE STRUCTURE AND MODE EXPANSION

The waveguide structure under consideration is shown in
Fig. 1, together with the coordinate system used for the
analysis. Both the core and substrate are assumed to be
composed of a uniaxial crystalline material. The z-axis is the
propagation direction of the optical waves. It is assumed that
the optical axes in the core and substrate regions are parallel
and that they make an oblique angle o with the z-axis in
the y-z plane. Then, the permittivity tensor in the waveguide
coordinate system is expressed as

Exxd 0 0
€4 = ¢€g 0 Eyyd Eyzd €y
0 Ezyd Ezzd

2
Exxd = Mg

a2 2 2 .2
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Fig. 1. The waveguide structure and coordinate system.

where n,q and n.q are an ordinary and an extraordinary
refractive index of the material. The subscript d refers to the
core, d = ¢, or the substrate, d = s. The free-space permittivity
is expressed by .

Now suppose the waveguide specified by (1) is connected
to a circular waveguide, occupying the region z < 0, with the
same radius and permittivity given by

1 0 0
e’-fd = &0€zxd 6 1 0 (3)
0 01

Propagating electromagnetic fields in the region z > 0 can
be expanded in terms of the normal modes of the waveguide
specified by (3) as follows:

Nosko
E= Zag,,(z)E,, +/0 a.(p,z)E(p)dp

Tosko
H= a0 (2)H, + /0 ar(p, ) H(p)dp (&)

where ag, (2) and a,(p, z) are complex amplitude coefficients
of the guided and radiation modes, p represents the transverse
propagation constant of the radiation modes, and kg is the
free-space wavenumber. For completeness, the upper bound
of the integral should be extended to infinity. However, the
evanescent modes with spectra in the range of ny.kg < p < 0o
which do not carry optical power away from the waveguide are
necessary not in order to account for the radiation losses, but
to express the fine details of the field close to the waveguide
discontinuities. Being interested in the leakage behavior of
optical waves in z > 0 when a certain guided mode is incident
on the interface at z = 0, we need only to take normal modes
with positive and real propagation constants into consideration
in the mode expansions. The effects of reflection at z = 0
can be neglected because the difference between the dielectric
constants (1) and (3) is very small for most practical cases.
In usual metal-diffused channel waveguides consisting of
LiNbOg3, for example, the difference of refractive index is very
small between the core and substrate regions. Therefore, the
LP modes will serve our purpose as an excellent approximation
to the rigorous normal modes in the waveguide defined by
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(3) [19]. Being expressed in rectangular components, the
LP modes match the permittivity tensor in mathematical
description.

III. COUPLED-MODE ANALYSIS

Suppose the waveguide is operated in the single-mode
region and either a x-polarized or y-polarized dominant mode
is incident on the interface at z = 0 from the region z < 0. If
we neglect the coupling between radiation modes due to the
discontinuity, the wave propagation in z > 0 can be described
by the following coupled-mode equations [13]:

d .
Iz ag(2) = (—jBy + Kyg)ay(2)
Nosko
+ Z/ K7, (p)ar(p, z) dp
L a(p,) = ~iB8a (0, )~ KT (P)ag(2) (5)

where (3, and (% represent the propagation constants of
the guided and radiation modes, respectively. The asterisk
indicates complex conjugation and the superscript p refers to
the polarization: p = z or y. The coupling coefficients K,
and K, are expressed as the following overlap integral of the
electric field [13]:

Huw = 4W/ /

where w is the angular frequency and W is the power carried
by a normal mode.

It is troublesome to solve (5) analytically in a closed form
since the integral with respect to p is included; so in the
present analysis, we discretize the continuum of radiation
modes for computational convenience. Using the increment

(éa—€q)-Ey,dzdy (6)

Ap, (i =1,2,---,n), the preceding coupled-mode equations
become
ag(z) = (—JBy + Kgg)ay(2) + ZZ e(p)ak(2)
P i=1
d D
%a’m(z) _]ﬁm m A01 p1 ag(z) (7)

where p; is assumed to take an intermediate value in the inter-
val Ap; for the sake of convenience. The complex amplitude
of a discretized radiation mode is defined by

ar,(2) = v/ Apy, ®

in order that its dimension coincides with that of the guided
modes. Readers are referred to [17] for details of the solution
to (7).

ar(py, 2)

IV. NUMERICAL RESULTS

The refractive indices in the core and substrate regions are
chosen so that n,, = 2.296, n,; = 2.286, n, = 2.21, and
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Fig. 2. Coupling coefficients between the y-polarized dominant mode and
x-polarized radiation modes as a function of the transverse propagation
constant.

nes = 2.2, which are the typical values for LiNbO3 channel
waveguides in practical use. The waveguide occupying the
region z < 0 with such indices supports only the dominant
mode when akg < 11.

Before investigating the details of leaky waves, the accuracy
of our. solutions should be checked. Fig. 2 shows the cou-
pling coefficients between the y-polarized dominant mode and
x-polarized radiation modes when aky = 8 and oo = 15°. The
coefficients are normalized relative to ko. The abscissa rep-
resents the normalized transverse propagation constant p/ko.
The coupling coefficients for the y-polarized radiation modes
have a functional dependence analogous to Fig. 2.

First, let us test the discretization of the p-space. The
radiation modes with transverse propagation constants in the
region 0 < p/ky < 0.3 are taken into account and are
discretized uniformly. The numerical values for the normalized
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power of the guided mode are listed in Table I when koz =
500 and 2000. They are in good agreement up to 4 or 5
significant digits. Judging from these results, the convergence
of solutions does not depend critically upon the interval of
discretization. However, we have to remark that nonphysical
behavior has been observed at large distances, kgz > 6000,
when the number of discretized modes is 20. With these results
in mind, numerical calculations in the following are carried
out with 80-discretized radiation modes, which corresponds
the interval of Ap,/ko = 0.00375.

Next, we check the convergence of solutions on the upper
bound of the integral (pmax) Wwith respect to p in (5). It
has been pointed out in [17] that in actual computations, the
upper bound need not be identical with n,,kq, but may be
far smaller without sacrificing accuracy. The lower bound of
the integral should be equal to zero since radiation modes
with small values of p significantly contribute to the mode
coupling even if their coupling coefficients are not large. The
numerical values of the solutions are listed in Table II when
koz = 500 and 2000. We can obtain solutions accurate to 4
significant digits when p > 0.28k¢. Therefore, in the following
calculations, we choose pmax = 0.3k, at which the absolute
value of the coupling coefficient decreases to one quarter of
its peak value.

One of the most important characteristics of the leaky wave
is the leakage loss. Fig. 3 illustrates the dependence of power
leakage on the angle a for the cases of (a) an incident y-
polarized mode and (b) an incident x-polarized mode when
ako = 8. Only the y-polarized mode exhibits noticeable leaky
behavior which can be observed in a narrow region of the
angle «. This corresponds to the fact that the TE guided mode
becomes leaky in a slab waveguide whose surface is parallel

TABLE I
CONVERGENCE OF SOLUTIONS ON THE NUMBER OF THE DISCRETIZED MODES FOR THE REGION OF 0 < p/ko < 0.3

Power of the Guided Wave

Number of Discretized Modes koz = 500 koz = 2000
20 0.486338 0.033799
40 0.486334 0.033783
60 0.486339 0.033782
80 0.486338 0.033782
120 0.486338 0.033782
TABLE 11

'‘CONVERGENCE OF SOLUTIONS ON THE UPPERD BOUND OF THE INTEGRAL IN (5), WHERE Ap, /ko = 0.00375

Power of the Guided Wave

Prax/ko (pPmax/Ap,) koz = 500 koz = 2000
0.11 (30) 0.729722 0.035042
017 (45) 0.526194 0.027664
022 (60) 0.485945 - 0.033575
0.28 (75) 0.486384 0.033751
045 (120) 0.486233 0.033840




1162

a = 0°
1.0 Y
5 0.75
g
2%}
T 05
&
g
2 025
0 1 2 3 4 5
koz x10°
@
a = 0°, 90°
—_—
1.0
o coo \ 15°, 75°
8 075 * 5 30°, 60 :
- Q
a
T 05
E
=
2 025
0 12 3 1 5
koz x10%
(b

Fig. 3. Power change of the incident mode as a function of the propagation
distance with the oblique angle as a parameter: (a) the y-polarized mode
incidence and (b) the x-polarized mode incidence.

to the y-z plane in the coordinate system in Fig. 1[7]. Leaky
waves do not exist in a slab waveguide with the optical axis
in the y-z plane whose surface is parallel to the x-z plane
[6]. In the circular channel waveguides which are considered
in the present paper, however, the x-polarized mode would
become leaky instead if the optical axis is in the x-z plane. This
fact can be easily understood from symmetry considerations
of the structure. Although the actual sections of practical
channel waveguides are somewhat different from Fig. 1, the
physical principles are qualitatively the same. Therefore, one
of the orthogonally polarized modes becomes leaky in general
cylindrical waveguides composed of uniaxial whose optical
axis lies on the plane which is defined by the propagation axis
and one of the transverse coordinate axes. An absolute single-
mode single-polarized operation may be possible by means of
these structures.

Another important property is the filed distribution. Fig. 4
shows the power density of the leaky wave observed in
the £ = 0 and y = O planes along the propagation axis
when aky = 8 and o = 15°. The bird’s eye views of the
power density for the radiated field on the cross sections
at kgz = 250, 750, and 1500 are illustrated in Fig. 5. It is
recognized from these figures that the optical wave leaks its
power mainly in the plane which contains the optical axis.
This behavior is quite a distinct difference from that of a slab
waveguide.
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Fig. 4. Power density of the leaky wave observed (a) in the z = 0
plane and (b) in the y = 0 plane.

V. CONCLUSION

We have investigated the wave propagation in a circular
channel waveguide consisting of uniaxial crystalline material.
The optical axis of the material lies on the plane which is
defined by the propagation axis and one of the transverse co-
ordinate axes. The analytical method is based on the coupled-
mode theory, where the coupling between radiation modes is
neglected. The continuum of radiation modes is discreted for
the convenience of numerical integration. Numerical data are
presented for waveguides composed of LiNbOg, a representa-
tive uniaxial crystalline material used for optical devices. The
leakage behavior for oblique propagation is discussed with the
oblique angle as a parameter. An absolute single-mode single-
polarized operation is suggested. Field distributions of leaky
waves are also presented which exhibit notable differences

- from those of leaky waves in slab waveguides.
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Fig. 5. Bird’s eye views of the power density for the radiated field on the
cross sections at (a) koz = 250, (b) koz = 750, and (¢) kgz = 1500.
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